首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8191篇
  免费   1163篇
  国内免费   5464篇
  2024年   19篇
  2023年   351篇
  2022年   406篇
  2021年   477篇
  2020年   602篇
  2019年   695篇
  2018年   651篇
  2017年   650篇
  2016年   598篇
  2015年   600篇
  2014年   579篇
  2013年   722篇
  2012年   598篇
  2011年   547篇
  2010年   475篇
  2009年   625篇
  2008年   549篇
  2007年   624篇
  2006年   527篇
  2005年   487篇
  2004年   438篇
  2003年   430篇
  2002年   342篇
  2001年   307篇
  2000年   284篇
  1999年   286篇
  1998年   216篇
  1997年   205篇
  1996年   215篇
  1995年   189篇
  1994年   172篇
  1993年   127篇
  1992年   118篇
  1991年   102篇
  1990年   106篇
  1989年   103篇
  1988年   74篇
  1987年   57篇
  1986年   48篇
  1985年   34篇
  1984年   34篇
  1983年   10篇
  1982年   47篇
  1981年   20篇
  1980年   24篇
  1979年   19篇
  1978年   5篇
  1975年   4篇
  1973年   5篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Phytoextraction of Risk Elements by Willow and Poplar Trees   总被引:1,自引:0,他引:1  
To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4–2.0 mg Cd.kg?1, 78–313 mg Zn.kg?1, 21.3–118 mg Cu.kg?1). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg?1, 909 mg Zn.kg?1, and 17.7 mg Cu.kg?1) compared to Populus clones (maximum 2.06 mg Cd.kg?1, 463 mg Zn.kg?1, and 11.8 mg Cu.kg?1). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.  相似文献   
992.
Although vegetation rehabilitation on semi-arid and arid regions may enhance soil carbon sequestration, its effects on soil carbon fractions remain uncertain. We carried out a study after planting Artemisia ordosica (AO, 17 years), Astragalus mongolicum (AM, 5 years), and Salix psammophila (SP, 16 years) on shifting sand land (SL) in the Mu Us Desert, northwest China. We measured total soil carbon (TSC) and its components, soil inorganic carbon (SIC) and soil organic carbon (SOC), as well as the light and heavy fractions within soil organic carbon (LF-SOC and HF-SOC), under the SL and shrublands at depths of 100 cm. TSC stock under SL was 27.6 Mg ha?1, and vegetation rehabilitation remarkably elevated it by 40.6 Mgha?1, 4.5 Mgha?1, and 14.1 Mgha?1 under AO, AM and SP land, respectively. Among the newly formed TSC under the three shrublands, SIC, LF-SOC and HF-SOC accounted for 75.0%, 10.7% and 13.1% for AO, respectively; they made up 37.0%, 50.7% and 10.6% for AM, respectively; they occupied 68.6%, 18.8% and 10.0% for SP, respectively. The accumulation rates of TSC within 0–100 cm reached 238.6 g m?2y?1, 89.9 g m?2y?1 and 87.9 g m?2y?1 under AO, AM and SP land, respectively. The present study proved that the accumulation of SIC considerably contributed to soil carbon sequestration, and vegetation rehabilitation on shifting sand land has a great potential for soil carbon sequestration.  相似文献   
993.
The effect of Neotyphodium endophytes on growth parameters and zinc (Zn) tolerance and uptake was studied in two grass species of Festuca arundinacea and Lolium perenne. Plants were grown under different Zn concentrations (control, 200, 400, 800, and 1800 mg kg?1) in potted soil for 5 months. The results showed that the number of plant tillers was 85 and 51% greater in endophyte infected Festuca (FaEI) and Lolium (LpEI), respectively, compared to their endophyte free (EF) plants. Roots and shoots dry weights in infected Festuca were 87 and 9% greater than non-infected counterparts but in opposite, EF Lolium had 47 and 8% greater root and shoot dry weights than LpEI. Endophyte infected Festuca and Lolium improved chlorophyll fluorescence as Fv/Fm at high concentrations of Zn, showing their better chlorophyll functions and significant reduction of Zn stress in endophyte infected plants. Shoots of endophyte infectedFestuca had 82% greater concentration of Zn than EF Festuca when grown in soil containing 1800 mg kg?1 Zn. Festuca and Lolium may tolerate high Zn concentration in soil without reduction in shoot and root growth. Endophyte infection in Festuca may help the grass accumulate and transport more Zn in aboveground parts under Zn-stress, thereby aiding phytoremediation of contaminated soils.  相似文献   
994.
This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg?1) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg?1) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21–72.84%, while that of the corresponding controls was only 25.85–34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.  相似文献   
995.
In this research, kinetics of Cr(VI) reduction by iron filings was investigated through a batch study in seven different soils. Chromate reduction experiments were carried out for initial Cr(VI) concentrations ranging from 20 to 100 mgkg?1 and iron filings dosage of 0 to 5% w/w. The experimental data were analyzed using various kinetic models including zero-order, pseudo first-order, power function, Elovich, and diffusion parabolic. Results showed that the Cr(VI) reduction efficiency in the presence of all studied soils increased with increasing iron filings dosage and decreased with increasing the initial Cr(VI) concentration. The reaction rates considerably depended on pH and were higher in acidic soils. The diffusion parabolic model was the best kinetic model as evidenced by the highest determination coefficient (r2) and the lowest standard error of the estimate (SE). The rate-limiting step(s) may be transport of chromate anions across a liquid film at the interface of soil-liquid, transport in liquid-filled macropores of iron filings aggregates, or diffusion in micropores and along the particle's surface.  相似文献   
996.
This article reports the results of a study focused on the presence and bioavailability of arsenic in agricultural soil in the mining and industrial regions of northern Kosovo and southern Serbia, as well as uptake and bioaccumulation of arsenic in two commonly cultivated plant species (Zea mays L. and Solanum tuberosum L.). This area was one of the most important mining districts in Europe. The collected soil samples were subjected to a modified BCR three-step sequential extraction procedure in order to investigate the chemical partitioning of arsenic in the soils. The general distribution of arsenic in various fractions was: exchangeable < reducible < oxidizable fractions. Highest concentrations of total arsenic in soil were found close to industrial facilities and tailing ponds. In addition, fluvisols were significantly more enriched with arsenic than soils at a distance from the river flows. The edible parts of the plant specimen showed different As contents, suggesting that these plant species have different propensities for the uptake and bioaccumulation of arsenic from soil.  相似文献   
997.
The use of surfactants as a method for solubilization and removal of heavy metal contamination from soil has been reported before. Biosurfactants produced by some microorganisms are able to modify the surface of various metals and aggregate on interphases favoring the metal separation process from contaminated environments. We evaluated the feasibility of enhancing the removal of metal ions from mineral waste/contaminated soils using alternate cycles of treatment with rhamnolipid biosurfactants and bioleaching with a mixed bacterial culture of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Bioleaching alone removed 50% Zn and 19% Fe. When rhamnolipids were used at low concentration (0.4 mg/mL), 11% Fe and 25% Zn were removed, while at 1 mg/mL 19% Fe and 52% Zn removal were achieved. When using a cyclic treatment combining bioleaching and biosurfactants, metal removal reached up to 36% for Fe and 63% to 70% for Zn.  相似文献   
998.
Pine wilt disease (PWD) has caused significant Masson pine mortality in the Three Gorges reservoir region in central China. In this study, five uniform Masson pine stand types infected by PWD were selected and surveyed on slopes and aspects with similar environmental conditions. In sites that had been infected, soil bulk density was reduced, and the difference among the groups was statistically significant (< 0.05) at the 0–10 cm and 10–20 cm soil layers, but not at 20–40 cm. Other soil water‐related physical properties, excluding noncapillary porosity, significantly differed among the groups in all soil layers. Additionally, the values of available phosphorus, sodium, potassium, calcium, and magnesium were higher in the invaded stands, but the total nitrogen and organic matter contents were lower. Masson pine does not become reestablished following PWD‐induced mortality but is instead replaced by broad‐leaved tree species. Among the 19 examined environmental variables, five were found to be significantly related with the ordination of plant community structure: Masson pine stumps (MPS), K+, capillary water holding capacity (CWHC), capillary porosity (CP), and soil water content (SWC). Among these factors, the plant community structure was principally related to MPS and K+. The findings of this study show that the outbreak of PWD has impacted Masson pine forest soil properties and altered forest community composition. The disease is negatively related with the presence of Masson pine and positively associated with that of broad‐leaved tree species.  相似文献   
999.
The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long‐term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life‐form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate.  相似文献   
1000.
【背景】转基因作物种植的安全问题一直备受关注。关于Bt蛋白对地下非靶标生物影响的研究是转基因作物安全评价的重要内容。【方法】在转Bt基因水稻收割后的稻田里分别种植豌豆、紫云英和油菜作为后茬作物。分别于2013年1、3和6月3次采集不同后茬作物田中的土壤作为材料,于室内饲养赤子爱胜蚓,4周和7周后,测定蚯蚓的生长发育指标、存活率以及体内酶活性的变化情况。此外,还测定了不同深度土壤中Bt蛋白的含量以及用Bt蛋白直接饲喂的赤子爱胜蚓的存活率。【结果】与种植过非转基因水稻MH63的土壤相比,分别种植过含cry2A和cry1C基因水稻后的土壤对赤子爱胜蚓的生长发育、存活率及体内酶活性无显著影响。1月份和3月份转cry2A基因水稻田以及1月份转cry1C基因水稻田采集的表层土样中的Bt蛋白含量显著高于地下10 cm和地下20 cm土壤中的含量,地下2层土样中的Cry2A蛋白含量之间无差异。3月份转cry1C基因水稻田以及6月份转cry2A和转cry1C基因水稻田的土壤中Bt蛋白的含量均不受土壤深度的影响。种植的后茬作物对土壤中的Bt蛋白无显著消解作用。室内模拟土壤最高Bt蛋白浓度的条件下,Cry2A蛋白处理的蚯蚓存活率为96.7%,Cry1C蛋白处理的蚯蚓存活率为95.0%,两者与对照相比无显著差异。【结论与意义】转cry2A和cry1C基因Bt水稻的种植对蚯蚓的生长发育和体内酶活性无显著影响。本研究为转基因水稻的安全评价提供了一定的依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号